设x+y+z=0,求证:6(x^3+y^3+z^3)=<(
求证:6(x^3+y^3+z^3)=<(x^2+y^2+z^2)^3.
证明: 由x+y+z=0及对称性,不妨设x>=0,y>=0,z=<0. 由x+y=-z得z^2=(x+y)^2, 从而(x^2+y^2+z^2)^3=8(x^2+xy+y^2)^3. 由A3>=G3,得 x^2+xy+y^2 =x(x+y)/2+y(x+y)/2+(x^2+y^2)/2 >=3[xy(x+y)^2/4*(x^2+y^2)/2]^(1/3) >=3[(x^2y^2z^2)/4]^(1/3) 故(x^2+y^2+z^2)^3 >=3*27*(x^2y^2z^2)/4 =54x^2y^2z^2 =6(x^3+y^3+z^3)^2. 证毕.