数学证明在△ABC中,求证cos(A/2)+cos(B/2)+c
在△AB中,求证 cos(A/2)+cos(B/2)+cos(C/2)>2
在△AB中,求证 cos(A/2)+cos(B/2)+cos(C/2)>2 (1) 对所证不等式作角变换:A/2→90°-A,B/2→90°-B,C/2→90°-C. 等价于在锐角三角形求证 sinA+sinB+sinC>2 (2) 由正弦定理得: a+b+c>4R (3) 而在锐角三角形中,有 a+b+c>2(2R+r) (4) 故成立. 给出一般证法 在△ABC中,n≥1,求证 cos(A/n)+cos(B/n)+cos(C/n)>2+cos(π/n) 证明 不妨设C=max(A,B,C) ,则有 cos(A/n)+cos(B/n)+cos(C/n)-2-cos(π/n) =cos(A/n)-1+cos(B/n)-1+cos(C/n)-cos(π/n) =-2[sin(A/2n)]^2-2[sin(B/2n)]^2+2sin[(π+C)/2n]*sin[(π-C)/2n] 故只需证 sin[(π+C)/2n]*sin[(π-C)/2n]>sin(A/2n)]^2+[sin(B/2n)]^2 (1) 若(π+C)/2n<π/2,则sin[(π+C)/2n]>sin[(π-C)/2n] (2) 若(π+C)/2n≥π/2, 则π-(π+C)/2n=[(2n-1)π-C]/2n≥(π-C)/2n>0,知(2)成立。 因此我们只需证 {sin[(π-C)/2n]}^2>sin(A/2n)]^2+[sin(B/2n)]^2 (3) <==> [sin(A+B)/2n]^2>sin(A/2n)]^2+[sin(B/2n)]^2 而[sin(A+B)/2n]^2-sin(A/2n)]^2-[sin(B/2n)]^2 =sin(A/2n)]^2*{cos(B/2n)]^2-1}+[sin(B/2n)]^2*{[cos(A/2n)]^2-1}+2sin(A/2n)*sin(B/2n)*cos(A/2n)*cos(B/2n) =2sin(A/2n)*sin(B/2n)*[cos(A/2n)*cos(B/2n)-sin(A/2n)*sin(B/2n)] =2sin(A/2n)*sin(B/2n)*cos[(A+B)/2n]>0, 所以(3)式也即(1)式成立,命题得证。