数列{an}的前n项和为Sn,当n>=1时,S(n+1)是?
数列{an}的前n项和为Sn,当n>=1时,S(n+1)是a(n+1)与 S(n+1)+2的等比中项. 1.求证:当n>=时,1/Sn-1/S(n+1)=1/2 2.设a1=-1,求Sn的表达式 3.设a1=-1,且{n/[(pn+q)Sn]}是等差数列{pq不等于0},求证:p/q是常数.
1.S(n+1)是a(n+1)与 S(n+1)+2的等比中项. [S(n+1)]^2=a(n+1)[S(n+1)+2]=[s(n+1)-s(n),S(n+1)+2] =[s(n+1)]^2+2s(n+1)-s(n)s(n+1)-2s(n), 2s(n+1)-s(n)s(n+1)-2s(n)=0, 1/[s(n+1)-1/[S(n)]=-1/2,知结论成立。 2.s1=a1=-1,1/Sn=-1-1/2*(n-1)=-(n+1)/2,Sn=-2/(n+1). 3.设f(n)=n/[(pn+q)Sn],则 f(3)+f(1)=2f(2), 即 -6/(3p+q)-1/(p+q)=-6/(2p+q), 两边乘以-(3p+q)(p+q)(2p+q),得 6(p+q)(2p+q)+(3p+q)(2p+q)=6(3p+q)(p+q) (3p+q)(2p+q)=6p(p+q), 6p^2+5pq+q^2=6p^2+6pq, q^2=pq, p/q=1.