数学求证1×2+2×3+3×4+…+n(n+1)=1/3n(n+
求证 1×2+2×3+3×4+…+n(n+1)=1/3 n(n+1)(n+2)
证明:数学归纳法 n=1时 1×2 =(1/3)×1 ×2×3成立 设n=k时,成立,即 Sk=1×2+2×3+3×4+…+k(k+1)=1/3 k(k+1)(k+2) 则n=k+1时 S(k+1)=1×2+2×3+3×4+…+k(k+1)+(k+1)(k+2) =Sk+(k+1)(k+2) =1/3 k(k+1)(k+2)+(k+1)(k+2) 提取公因式(1/3)(k+1)(k+2)得 S(k+1)=(1/3)(k+1)(k+2)(k +3) =(1/3)(k+1)[(k+1)+1,(k+1)+2] 即n=k+1时也成立 所以1×2+2×3+3×4+…+n(n+1)=1/3 n(n+1)(n+2)