求解微分方程如图
如图
∫{x→a}√[1+f'(u)]du=[f(x)-xf'(x)]/c 1. x=a ==> f(a)-af'(a)=0 2. 原式两边求导得: -√[1+f'(x)]=-xf''(x)/c ==> x/x=d[f'(x)]/√[1+f'(x)] 两边积分得: clnx+D=2√[1+f'(x)] 3. 两边平方得: f'(x)=[clnx+D]^2/4-1 两边积分得: f(x)=[c^2/2-1]x+x[clnx+D]^2/4-cx[clnx+D]/2+E. 4. f(a)-af'(a)=0 ==> [c^2/2-1]a+a[clna+D]^2/4-ca[clna+D]/2+E= =a{[clna+D]^2/4-1} ==> ac^2/2-ca[clna+D]/2+E=0 ((1)) 5. 将4.的解代入原方程: c∫{x→a}√[1+f'(u)]du=[f(x)-xf'(x)]验证 c∫{x→a}√[1+f'(u)]du= =c∫{x→a}[clnu+D]/2du= =ca[clna+D]/2-cx[clnx+D]/2-c^2/2∫{x→a}du= =ca[clna+D]/2-cx[clnx+D]/2-c^2[a-x]/2 ((2)) [f(x)-xf'(x)]= =[c^2/2-1]x+x[clnx+D]^2/4-cx[clnx+D]/2-ac^2/2+ +ca[clna+D]/2-x[(clnx+D)^2/4-1]= =c^2x/2-cx[clnx+D]/2-ac^2/2+ca[clna+D]/2 ((3)) ==> ((2))=((3)) ==> f(x)=[c^2/2-1]x+x[clnx+D]^2/4-cx[clnx+D]/2- -ac^2/2+ca[clna+D]/2 为原方程的通解. 注意:只研究c>0,clnx+D≥0的情况. 若clnx+D<0,解类似.