若a、b、c∈(0,+∞),且kabc/(a+b+c)≤(a+b?
求k的最大值.
由均值不等式得, (a+b)^2+(a+b+4c)^2 =(a+b)^2+[(a+2c)+(b+2c)]^2 ≥[2根(ab)]^2+[2根(2ac)+2根(2bc)]^2 =4ab+8ac+8bc+16c根(ab) 于是, {[(a+b)^2+(a+b+4c)^2]/abc}*(a+b+c) ≥[4ab+8ac+8bc+16c根(ab)](a+b+c)/abc] =[4/c+8/b+8/a+16/根(ab)](a+b+c) =8[1/(2c)+1/b+1/a+1/根(ab)+1/根(ab)](a/2+a/2+b/2+b/2+c) ≥8[5(1/2a^2b^2c)^(1/5),5(a^2b^2c/16)^(1/5)] =100 ∴当且仅当a=b=2c>0时取等号, 故k的最大值为100.