已知:f(n)=cos(nπ/6),求f(1)+f(2)+f(3?
已知:f(n)=c(nπ/6),求f(1)+f(2)+f(3)+···+f(960)的值。 写下过程! 谢谢帮助!
解:f(n+12)=cos[2π+(nπ/6)]=cos(nπ/6)=f(n),即f(n)周期为12 f(1)=cos(π/6)=√3/2,f(2)=cos(π/3)=1/2,f(3)=cos(π/2)=0 f(4)=cos(2π/3)=-1/2,f(5)=cos(5π/6)=-√3/2,f(6)=cosπ=-1 f(7)=cos(7π/6)=-√3/2,f(8)=cos(4π/3)=-1/2, f(9)=cos(3π/2)=0,f(10)=cos(5π/3)=1/2, f(11)=cos(11π/6)=√3/2,f(12)=cos(2π)=1 计算得f(1)+f(2)+…+f(12)=0,960÷12=80,故 f(1)+f(2)+f(3)+…+f(960)=80[f(1)+f(2)+…+f(12)]=0