请教一道不等式题目x+y+z=1,x,y,z∈R+证明:9xyz
x+y+z=1,x,y,z∈R+ 证明:9xyz+1≥4ab+4bc+4ca
x+y+z=1,x,y,z∈R+ 证明:9xyz+1≥4ab+4bc+4ca 符号有误,应该为4(yz+zx+xy) 9xyz+1≥4(yz+zx+xy) 因为x+y+z=1,对所证不等式齐次化,等价于 9xyz+(x+y+z)^3≥4(yz+zx+xy)(x+y+z) <===> x^3+y^3+z^3-(y+z)x^2-(y^2+z^2)x-yz(y+z)+3xyz≥0 不失一般性,设x=min(x,y,z),则上式分解为 x(x-y)(x-z)+(y+z-x)(y-z)^2≥0 显然成立. 其实上述代数不等式等价于几何不等式: s^2≥16Rr+5r^2.