设x、y、z∈R+,√(x^2+y^2)+z=1,求xy+2xz?
∵√(x^2+y^2)+z=1且x、y、z∈R+, 故可令z=(sinα)^2,√(x^2+y^2)=(cosα)^2, 而x=(cosα)^2sinβ,y=(cosα)^2cosβ, 其中,α、β∈(0,π/2]. 于是,代入所求式整理,得 xy+2xz =[sinβ/(2-cosβ),2(cosα)^2-cosβ(cosα)^2,cosβ(cosα)^2+2(sinα)^2] ≤[sinβ/(2-cosβ),(2(cosα)^2-cosβ(cosα)^2+cosβ(cosα)^2+2(sinα)^2)/2]^2 =sinβ/(2-cosβ). 令tan(β/2)=t,则依万能代换公式有, xy+2xz ≤[2t/(1+t^2)]/[2-((1-t^2)/(1+t^2))] =2t/(1+3t^2) ≤2t/(2√3t) =√3/3. 当x=√3/3,y=z=1/3时,上式取等号. 即xy+2xz的最大值为√3/3。