求极值设x,y,z为正数,满足:x^2+y^2+z^2=1,求x
设x,y,z为正数,满足:x^2+y^2+z^2=1,求x/(1-x^2)+y/(1-y^2)+z/(1-z^2) 的极值.
证明 容易猜到当x=y=z=√(1/3)时, x/(1-x^2)+y/(1-y^2)+z/(1-z^2)取得最小值(3√3)/2. 据柯西不等式得: [x/(1-x^2)+y/(1-y^2)+z/(1-z^2)]*[x^3*(1-x^2)+y^3*(1-y^2)+z^3*(1-z^2)] ≥(x^2+y^2+z^2)^2=1. 故只需证明 x^3*(1-x^2)+y^3*(1-y^2)+z^3*(1-z^2)≤2/(3√3) (1) (1)<==> 2/(3√3)+x^5+y^5+z^5≥x^3+y^3+z^3 (2) 由均值不等式得: 2x^2/(3√3)+x^5≥3*{[x^2/(3√3)]^2*x^5}^(1/3)=x^3; 3-1) 2x^2/(3√3)+z^5≥3*{[z^2/(3√3)]^2*z^5}^(1/3)=z^3; (3-2) 2y^2/(3√3)+y^5≥3*{[y^2/(3√3)]^2*y^5}^(1/3)=y^3 (3-3) (3-1)+(3-2)+(3-3)即得(2)式。 下面给出第二种证法: 求x/(1-x^2)+y/(1-y^2)+z/(1-z^2) 的最小值.只需证: x/(1-x^2)+y/(1-y^2)+z/(1-z^2)≥(3√3)/2. (1) 因为x,y,z为正数,所以 x/(1-x^2)-(3√3)x^2/2=x(√3*x-1)^2*(√3*x+2)/[2(1-x^2)]≥0 故得: x/(1-x^2)≥[(3√3)/2]*x^2 (2) z/(1-z^2)≥[(3√3)/2]*z^2 (3) t/(1-y^2)≥[(3√3)/2]*y^2 (4) (2)+(3)+(4)得: x/(1-x^2)+y/(1-y^2)+z/(1-z^2)≥[(3√3)/2]*(x^2+y^2+z^2)=(3√3)/2.